Working with Yoram

...from Ideas to Reality.

J. Vanderlei Martins - UMBC

Department of Physics and JCET/NASA GSFC Climate & Radiation Laboratory

Acknowledgements

- PhD Students
 - Reed Espinosa
 - Daniel Orozco
 - Brent McBride
- Alumni
 - Adriana Rocha Lima (currently at Goddard)
 - Gergely Dolgos (in Switzerland)
 - Li Zhu
- Lorraine Remer (JCET-UMBC)
- Roberto Fernandez-Borda (JCET-UMBC)
- Oleg Dubovik (Univeristy of Lille, and UMBC)

Three out of the many Projects I had the privilege to work with Yoram:

Aerosol Absorption

Cloud Side
 Measurements

- Aerosol Absorption
 - Critical Reflectance: Fraser and Kaufman 1985
 - Aerosol absorption over sunglint: Kaufman et al. 2002
 - Spectral Reflectance measurements: Martins et al. 2009

Cloud Side Measurements

Aerosol Absorption

- Critical Reflectance: Fraser and Kaufman 1985
- Aerosol absorption over sunglint: Kaufman et al. 2002
- Spectral Reflectance measurements: Martins et al. 2009

Cloud Side Measurements

- Idea presented to Yoram and others in 2002
- Yoram was the only scientist at the time who answered:
 "Lets do it. I will find the resources to cover it..."

Aerosol Absorption

- Critical Reflectance: Fraser and Kaufman 1985
- Aerosol absorption over sunglint: Kaufman et al. 2002
- Spectral Reflectance measurements: Martins et al. 2009

Cloud Side Measurements

- Idea presented to Yoram and others in 2002
- Yoram was the only scientist at the time who answered:
 "Lets do it. I will find the resources to cover it..."

- CO2BRA measure BC from Space over sunglint:
- AEROSAT preview to ACE mission
- CLAIM-3D Cloud Side microphysical profiles

Critical Reflectance Maps of Aerosol Absorption

Zhu, Martins and Remer 2011

AERONET	SSA (at 470 nm)		SSA (at 550 nm)		SSA (at 670 nm)	
sites	AERONET	MODIS	AERONET	MODIS	AERONET	MODIS
Alta Floresta	0.92 ± 0.02	0.92 ± 0.03	0.91±0.03	0.92 ± 0.03	0.92 ± 0.03	0.90±0.03
	(22 cases)		(22 cases)		(18 cases)	
Senanga	0.86±0.01	0.87±0.01	0.85±0.01	0.87±0.01	0.84±0.01	0.86±0.01
	(7 cases)		(7 cases)		(7 cases)	
Mongu	0.88±0.02	0.86±0.02	0.87±0.03	0.86±0.02	0.86±0.03	0.84±0.02
	(14 cases)		(14 cases)		(14 cases)	
Mwinilunga	0.90±0.02	0.86±0.01	0.90±0.02	0.85±0.01	0.89±0.03	0.84±0.01
	(3 cases)		(3 cases)		(3 cases)	18

Figure 7: 22 February 2007 0.553 μm Rcrit (upper left), SSA (upper right), and spectral SSA at Tamanrasset (lower) from Rcrit and AERONET.

Aerosol Spectral Absorption

Aerosol Spectral Absorption Measurements — Rocha-Lima et al.

Volcanic Ash Eyjafjallajökull (Iceland)

Ash was collected on the ground, about 35 km from the center of the eruption of the volcano.

Mass Abs. Efficiency 0.25 Fine Mixed 0.20 0.15 α (m₂/g) 0.05 0.00 250 650 1050 1450 1850 2250 2650 Wavelength (nm)

Saharan Dust

Sample collected on Bordj Badj Mokthar in Algeria (Supersite 1) during Fennec campaign in June 2011.

Mass Abs. Efficiency

Imaginary Ref. Index

STEAR experiment at UMBC Lab

(Rocha-lima et al. in preparation)

Volcanic ashes:

PI-Neph Retrievals from SEAC4RS

measurments (670 nm

fit (670 nm)

W. Reed Espinosa, J. Vanderlei Martins, Oleg Dubovik, Lorraine Remer

PI-Neph produces unique direct/airborne measurements of polarized phase function of aerosols, and the retrievals of size distribution and refractive indices using both P11 and –P12/P11 at 3 wavelengths.

fit (532 nm)

fit (470 nm)

How the particle properties depend on Ambient conditions?

In Particular RH...

Dried/Humidified Ambient aerosols PI-Neph X AERONET

Laboratory measurements of Aerosols

Figure 6 – Example of PI-Neph measured dry versus humidified phase functions for laboratory generated NaCl aerosols. The three figures on the left-hand side show the evolution of P11 at three wavelengths (471, 532, and 671nm) for two different RH values (<20% and ~80%), and the three right-hand side figures shows the variation in P12.

GRASP Inversion X theory for Humidified Refractive indices:

Compound	RH(%)	κ	n GRASP	n Theory
NaCl	83	0.91 - 1.12	1.380	1.347 - 1.352
$(NH_4)_2SO_4$	84	0.33 - 0.53	1.380	1.379 - 1.413
$(NH_4)NO_3$	82	0.33-0.53	1.375	1.361-1.380

Ambient Aerosols:

Orozco et al. (in preparation)

PI-Neph X AERONET size distributions

Figure 12 – Retrieval of the size distribution from the dried aerosols measured by the PI-Neph compared with the size distribution from AERONET. The AERONET results show clearly the stronger coarse mode than the PI-Neph which can derive from a few factors including: humidity and high humidification factor for these aerosols or particle losses in the inlet of the instrument and/or inside the diffusion drier,

In situ measurements of Undisturbed particles:

The Open Imaging Nephelometer

Open Ineph First Results from DAQ

Measurement of the cloudbow inside the cloud

- ISS orbit
- 60 angles for cloudbows
- 20 angles for aerosols
- 440, 550, 670, 870nm
- Nadir pixel resolution 600m
- Super pixel 2.5x2.5km
- 94 deg FOV X-track
- 117 deg FOV along track

Repeat for all along track viewing angles

HARP CubeSat Satellite to launch in Dec. 2016

Imaging polarimeter

HARP Hyperangular Multi-Wavelength Polarization Images

HARP CubeSat Polarimeter

HARP Pioneering Hyper-Angular Capability will Provide Full Cloudbow Retrievals from Small Area (< 4x4km from space)

Same retrieval capability for all individual pixels with < 4x4km resolution

Water Droplet Distribution

 These two cases are undistinguishable from Intensity measurements only (MODIS/VIIRS)

Aerosol above Clouds and Aerosol Absorption (UV and Polarization)

Volcanic Ash, Twilight Aerosols, etc. (Polarim. + Cloud Radiometer)

Effective Radius (µm)

CLAIM-3D

PI: J. Vanderlei Martins (UMBC - JCET / 613)

- The interaction between aerosol and clouds carry the largest uncertainty in climate forcing
- CLAIM-3D will determine how cloud evolution, droplet sizes, lifetime, vertical structure, thermodynamic phase, and ice particle structure vary as a function of aerosol type and amount

Project Scientist: A. Marshak (GSFC 613)

- CLAIM-3D has unprecedented combination of mature instruments and algorithms to address the interaction between aerosols and clouds
- CLAIM-3D is designed to provide a full court press re vary characterization of the interactions between aerosol -- Competition Serand clouds

Aerosol Absorption

Cloud Side Measurements

Design of new satellite missions

The reality today...

- Multiple critical reflectance papers
- Sunglint: aerosol absorption over water
- Spectral reflectance: aerosol microphysics, imaginary refractive indices, composition...
- First cloud scanner instrument was built and demonstrated in the Amazon
- 3D simulations: Marshak, Zinner, etc.
- Current measurements and proposals by several European organizations and Brazil
- ACE, CLAIM-3D
- HARP CubeSat satellite early 2017
- PACS in situ + Remote Sensing Suite
- PACS Imaging Polari meter (HARP)
- High resolution cloud measurements
- Imaging Nephelometer measurements

Thank you Yoram

...for the ideas, motivation,
support, friendship
and for the reality...